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A method is presented for finding the original of the solution of the problem of the penetration of a thin 

body with a star-shaped transverse cross-section, obtained in (11 in linear dynamical elasticity theory. The 

fundamental properties of the solution are discussed. Examples are given of calculations of penetration into 

a compressible fluid. 

1. FINDING THE ORIGINAL OF THE SOLUTION 

USING THE principle of angular superposition of the solutions of simpler linear problems a solution 
was constructed in [l] for the problem of the penetration of a thin body consisting of n symmetric 
cycles into an elastic half-space. In the case of the penetration of a star-shaped conical body with 
plane faces and an even number of cycles n, the solution is constructed using the solution of the 
problem of the penetration with constant velocity v. of a thin wing with rhombic profile (Fig. 1). The 

FIG. 1. 
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exact solution of this problem was constructed in [l] by transforms of the required functions. 
particular, the LapIace transform ovv of the stress tensor component can be written in the form 

a 
IIy L k 

ax&r im 

pa2 .--pn” 
J 
j ’ l @ 0.7 rp) [ch (%I f ch (%)I rdr} dv ( 

0 

‘Jll,z = prR, sin (rp + B), R, == t/x2 + y2. tg 8 m.: yiz 

(r, (r, cp) = cB, (r) AaulAaol - d I(s2 - n) f (&I-l) -I- 

+ q2flRw1f (AI)1 Aam1A4-l - e [(s2 - n,) f (M-l) -+- 
-t- q2M-‘A2-1f (AZ)] A,-‘A,-’ i 2 [1 - 2y2 (1 - q’)l fzR-“f (A,) - 

- 2y’q’f~R-lf (A,), s = r sin q, q = r CDS cp 

4 (r) = f (M-l) - f (Al) f,R-‘, f (zu) = exp (--pxw), A, = 61 - ti 

AZ = t/r-” - 19, A, = r” - m, A4 = 1 - Mf2~21 A, := r2 - m, 

f, = qlq2 + 4W1r2A,, qr = ym2 - 2r2, q2 = ym2 - 2m 

fi = fil + fizA*-1 (i = 2, 3), R = Ql” + &2&A, 

$21 = --M,‘qaS2-r, fzz = -2 (Ms2q, + y2q1) s2-l, fal = 2M-‘MC% (qlAz-l - 

- 4AlAz-I), fa2 I= 2M t y2mzA2 (qz - 2s,Mm2) sl-’ + sin2 fiqlAz-l - 

- 4M,-2A, (MIS2 + s, - 1) s2-l] 

.$‘2 = 1 -i- MA%,,, q3 -= r2 + &PAZ, MC = M cos p, y := ba-1 

In 

.I 

M 
a= a + 2u 

----, 
P 

b=t;F; k=-$ Mt=Mtg& MlsP+ 

M,=Msinfl 

c = y2 (1 - 2y2) m2, d = 2y4mz, e = 4y2 

Here a and b are, respectively, the velocities of the longitudinal and transverse waves and h and fi 
are the Lame coefficients of the isotropic medium. Terms in the function @(r, ‘p) are grouped so as 
to show that when A3 = As = 0 there are no poles in @(r, 9) because of the structure of the function 
B1 and the square brackets. The first term in cP(r, ‘p) with the opposite sign and y = 0 corresponds to 
the solution of the problem of the penetration of a body into a compressible liquid, the remaining 
terms being zero. 

We shall find the original of the solution in the first quarter of the y, z plane (x>O), because the 
perturbed motion of the medium has two planes of symmetry y = 0 and z = 0 (Fig. 1). The 
right-hand side of (1.1) can be reduced in various ways to a form coinciding with a direct Laplace 
transform of the corresponding functions [Z], namely 

where r = at (t is the time) (11. 
Here we have chosen an approach in which the wave structures accompanying different body 
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penetration regimes are found explicitly. Below, without loss of generality [3], we shall assume that 
the Laplace transform parameter p > 0. 

Using the first term of the function @(r, cp) as an example we will consider the method of reducing expression 
(1.1) to the form (1.2), denoting by I that part of the transform uYv supplied by this term. We introduce a new 
variable of integration 

Then 

u = sin cp, A~-ldrp = A (r, ZL) du, A(r, u) = [T/l - u2 (1 - Mt2rQ2)]-1 (1.3) 

A (r, u) [ch (V3) -1 ch (WI du dr 1 (1.4) 

B (r) = B,(r) C (r), I.’ (r) = rA3-l, $3,a = pr (y 1/l - 23 + zu) 

Successively deforming the contours of integration in the complex u and r planes, we reduce expression (1.4) 
to the form (1.2). We find contours in the u plane on which relation 

.- 
y~1-u~+zu=w>o (1.5) 

is satisfied in accordance with the expressions for JTs and G4 (1.4). 
From (1.5) we find 

1‘ = f (ZLZ - y I/RI2 - w”) R,-2, y < w < R, (W 

u = f (zrz f iy 1 zu2 - R12) RI-z, R, < w < +-CC (1.7) 

Curves along which (1 S) is satisfied are shown qualitatively in Fig. 2. The segments OA and OAl correspond 
to (1.6) and the curves AB, AB’ and Al B1, Al & correspond to (1.7), with uA = z/R1 s 1. The arrows show 
the directions in which the parameter w increases. The points C and Cr with coordinates rtl are the beginnings 
of cuts directed along the real axis and associated with the radical d(1 -u*), the argument of which is 
computed from the formulae 

--- 
arg (I 1 - u2) = (cp, + ‘pzv2 (1.8) 

The angular coefficients of the asymptotes of hyperbolae B’AB and Bl’A, B1 are, according to (1.7), 

k’ = -J-y/z (1.9) 

The points El and E2 (Fig. 2) with coordinates u1,2 = 7(M,r)-1 are the poles of the function A (I-, u) (1.3). 

FIG. 2. 
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The inner integral in (1.4) is taken along the interval OC of the real semi-axis of the complex u plane. 
Decomposing it into four integrals for each exponential with argument k& or +$, inside the square bracket of 
the integrand, and closing the contour of each of these along OCDBAO, OCD’B’AO, OCDBB,AIO, 
OCD’B’BI’A1 0, respectively, (Fig. Z), where CD and CD’ are the upper and lower sides of the cut beginning 
at the point C, we find using (1.8) that the sum of the integrals along the intervals OA, OAl and CD, CD’ is 
zero. The integrals along the arcs DB, DB1, D’B’ and D’B1’ of circles with radii tending to infinity also vanish, 
because for any rE (0, +im) and using (1.8) and (1.9), the relations 

are satisfied on them. 
As a result of the specified transformations and changing the order of integration we find the following 

expression for Z(l.4): 

kc I 
I = - 2px2 ‘I 5 [II (u) - 12 (u)] du $ ( [I2 (u) - 11 (u)] f-h + 121 

,;rs, 

(1.10) 
AB 

iw -ice im 

I,(U)= [ D(r,u)dr, Z,(U)= \ D(r,u)dr, 13=2ni 1 B(r)[resf(ulj-resf(u2)]dr 
., 
0 h 0 

l'ps f (fL,,2) =: +i (1 - Mt”r?)-% exp I--p (fiy J/l - Mt2r2 + z)/Mt]/2 

D (r, IL) = A (r, u) B (r) exp (-prw) 

In (1.10) w is specified by (1.5) with the plus sign, and resf(u,) and resf( uz ) are residues of the integrand at 
the poles u1 and u2 (the points El and E2 on Fig. 2). 

We will find the contours in the complex r plane in which the relation 

is satisfied. 
It follows from (1.11) that 

ZL!I, -I- rw = t > (J (1.11) 

r = (TI(J - Z I/t,,’ - T2) TO-2, I < T < T,,, T,, my l/,,s (1.12) 

)’ =- (KU’ + iZ 1/X2 - to2) T,,-'. To < T < + 00 (1.13) 

Figure 3 qualitatively depicts the curves on which relation (1.11) is satisfied. The segment OE corresponds to 

FIG. 3. 
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(1.12), and the hyperbola branch F’EF corresponds to (1.13). The arrows show the direction of increasing 
parameter 7. The point E has the coordinate 

r, = wr”-r < 1 (1.14) 

Also shown are cuts directed along the real axis starting at points with coordinates f 1 and *y-l corresponding 
to the radicals A1 and A2 occurring in fr and R (1.1) and the poles +x-l of the integrand D (r, u) corresponding 
to a zero of the Rayleigh equation R = 0. According to Fig. 3 the arguments of the radical A1 and A2 are 
calculated using the formulae 

arg A1 = (cpr + (pJ2, arg A? = (cpl’ + ‘pz’),2 (1.15) 

We will change from integrating along the imaginary semi-axes OG (OG’) in the inner integrals of (1.10) to 
integrating along the real semi-axes OL (OL’) with integrands containing exp [ -p (x/M + rw )], and along the 
contours OEF (OEF’) for integrands containing exp [-p (xAi + rw)]. This can be done because in the first case 
on the circular arc GL (GIL’) Re(xlM+ rw) >O, and in the second because on the circular arcs GF (G’F’) 
Re @A1 + rw) > 0, and when the radius of the latter tends to infinity the integrals along it of the corresponding 
functions are equal to zero. For the specified deformations of the contours of integration one must take into 
account the existence in the right half-plane of poles of the function C((r) (not shown in Fig. 3) 

ro=I/ii,M>l (1.16) 

and lines of poles of the function A (r, u) 

)‘I,* = (M&-l (1.17) 

The latter are shown in Fig. 3 by the broken lines. The point A’ is the image of the point A (Fig. 2) and has 
the coordinate 

r, = (Mt cos (3)-l (1.18) 

In (1.17) we have used the notation rl for the curve A’HO, which is the image of the curve AB’ (Fig. 2), and 
r2 for the curve A’H’O which is the image of the curve AB. The arrows on A’HO and A’H’O show the 
direction of increasing parameter w. 

Thus, when changing the contour of integration OG (OG’) on OL (OL’), if uEAB’(AB) [see (l.lO)], and 
also OG (OG’) on OEF (OEF’), one must take account of residues of the corresponding integrand at the poles 
(1.17), in the first case for all w E [RI, + m), and in the second for w E [wl, + m). The parameter values w = w1 
and ? = 71 correspond to the point H (H’) of intersection of the curves EF (EF’) (1.13), A’HO (A’H’O) (1.7), 
(1.17) and are given by the expressions 

w12 = y2 f R,“(s2 - y2 + J’-R14 + 4Mt2x2z2) (y2 + Mf2s2)-l/2 

tl = 3 (q2 + 22) (q2 - y?)-‘/Mt 
(1.19) 

The point H (H’) will exist if re < r, , which, in accordance with (1.7), (1.14) and (1.18), leads to the condition 

p2 = priz > Mt, p1 = l/x2 i y2 + z2 (1.20) 

We note that the integrals along OL (OL’) and OE corresponding to (1.10) and (1.15) are of real functions 
and take opposite signs. Hence they mutually cancel [see (l.lO)], except for the first, if the pole r0 (1.16) is 
situated to the right of the point E (Fig. 3), which according to (1.14) and (1.16) corresponds to the inequality 

w < 5rngr m3 = 1/M” - 1 (1.21) 

When inequality (1.21) is satisfied, the difference between the integrals along OL and OL’ gives the residue 
of the integrand at the pole ra . (In this case the contours OL and OL’ should include semicircular arcs centred 
on r. with radius tending to zero.) 

After performing the specified transformations and using conditions (1.16), (1.20) and (1.21), we find the 
following expressions for Z (1.10): 



684 N. A. OSTAPENKO 

kc 
I = - +.$ - { j [Is (w) - 15 (w)l dw + \ [Is (w) - 1, (w)l dw + 

(1.22) 

An 48’ 
1 

+ a [ .jB [EI (u) - E’z (u) + E3 (u)l du - s [El(u) - Ez (u) + &(u)] du-1 m:- Z3\ 

I .4 B 

Z4 (w) = 1 E (w, t) e-p’dt, I5 (w) = 1 E (w, t) e-p’ dt 

EF’ EF 

E (ZP, T) = H (a - R,) H (T - T”) C (r) A (r, IL) f,R-’ (kh!dw) (dr/dr) 

E, (u) = H (M - 1) H (w - R,) H (mn3 - w) A (r”, u) exp [--p (z --I ~~n,)iMj 

E, (u) = H (w - R,) A (G,, 11) exp [-p (sw-1 t- (yl/l - It*, U -I- z) M,-‘)I 
E, (u) = IH (p3) H (w - R,) L H (-pa) H (w - q)l A (r,,, 10 fl (rli x 

X R-1 (rl) exp [--p (sM_l1/1 - rl’) + (yl/l - u2/zL + z) M,-‘1. p3 = Mil, - pZ 

Without presenting the calculations, we note that by changing to a new variable of integration v given by 

J/l- us/u = v, ii/l - M,*r?= v (1.23) 

the single integrals containing the functions E2(u), E3(u) and B(r) can be reduced to the difference of two 
pairs of integrals of the following two functions: 

El (v) := EB (v) exp [- p (aill- + (yv + 2) Rlt-r], EB (v) = (1 - mMtZ -I- 19)-r 

Eg (v) = EB (v) jl (v) R-’ (v) esp [-p (zJ’-.Mt2 - 1 - vz + !/v + 2) / ML] 
(1.24) 

The first pair of integrals of the function ES(v) are taken along the contours MNK and MN’K’ (Fig. 4), 
where the curve MN (MN’) is, according to (1.23), the image of the curve AB’ (AB) in the complex v plane. 
Here vN = i is the coordinate of the point N, while the coordinate of the point M and the equations of the 
curves MN and MN’ are given by the relations 

vAM = y/a; v = aI & ib, 

a, = yzI(w2 - y*), b, = WI/W! - R12/(ru2 - y2) (1.25) 

The arrows in Fig. 4 show the direction of increasing parameter wE [RI, + m). The difference between these 

FIG. 4. 
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integrals gives the residue of the function E4(v) at the pole P of the function Ed (1.24) when it is to the right 
of the point M: 

vp > L’M, VP = m6’cos b, ma == j’M,2, M, > 1 (1.26) 

The second pair of integrals of the function E,(v) is taken, in accordance with the arguments of the 
Heaviside function in E3 (u) (1.22), either along the contours SNK and S’N’K’ for pz> M,, where the point S 
(S’) is the image of the point H (H’) (Fig. 3) or along the contours MNK and MN’K’ when p2 < Mt. 

The function E5 (v) contains the radicals r3 = g(M: - 1 - v2) and r4 = d(M$ - 1 - v2) (where MI, = y-‘M,). 

If, for example, M,< 1, then the cuts corresponding to the first radical are situated on the imaginary axis 
beginning at the points U and U’ in the interval NN’. The rule for computing the argument of the radical is 
extended into the left half-plane (Fig. 4): arg(rs) = (cpi + (p2)/2. From this it follows that for consistency with 
relations (1.15) and (1.23) this radical should have a minus sign if v belongs to the first quarter. The same also 
applies to the case MI,< 1. For M,> 1 the cuts corresponding to both radicals are situated along the real axis 
beginning at the points U (Ui) and W (WI) in Fig. 4 with coordinates km, and fmi,, respectively, [where 
m, = d(M,2 - 1) and ml, = A/(MIt2 - l)]. According to the rule introduced for computing the argument of the 
radical in Fig. 4 arg(r3) = (vi’+ (p2’)/2, which leads to a result consistent with relations (1.15) and (1.23), and 
means that under the specified conditions both radicals are taken with the plus sign. Figure 4 also shows the 
positions of the pole vn of the function F,(V) corresponding to the zero of the Rayleigh equation R(v) = 0, 

“R = J’%,S t,&i - 1. M, = M/x 

TO obtain the difference of the integrals of the function Es(v) in the form (1.2) we find curves in the v plane 
along which the relation 

XT3 + yo + Z = M1T > 0 (1.27) 

is satisfied. 
From (1.27) we find 

v = (ys:, - I 1 ‘-tnf2R12 - ss2) R,-*, ss = Mt~ - z 

Mt > t, (rmf +- z)iM, < T < TV, TV = (z + mtR,)/Mt (1.28) 

v = (ys, + ix I/s*2 - (Mt* - 1) RI*) RI-* 

Mf > 1. 12 < T<+%; Mt<l. z/Mt<z<+ca (1.29) 

For M,< 1, relation (1.29) corresponds to hyperbola branches VT and V’T’ (Fig. 4), passing through the 
points S and S ‘, where according to (1.25) and (1.29) the parameters w and t take values identical with (1.19). 
This also occurs for M,> 1 if the point Y(T = r2) with coordinates 

tip = ymtiR, < ml (1.30) 

is to the left of the point M, which, according to (1.25) and (1.30), corresponds to condition (1.20). In this case 
one can pass from integrating the function Es (v) over to the contours SNK and S ‘N ‘K’ to integrating over the 
contours ST and S’T’ (T~GT< +m), because the integrals over the circular arcs KT and K’T’ with radii 
tending to infinity vanish. 

When condition (1.20) is violated the point Y is to the right of the point M (Fig. 4). Here one can pass from 
integrating over the contours MNK and MN’K’ to integrating over the contours MY& and MYQ’ and going 
round the pole P of the function E6(v) (1.24) if condition (1.26) is satisfied: 

VP < VY (1.31) 

Consequently, when inequalities (1.26) and (1.31) are satisfied, the difference of the integrals of the function 
Es(v) over the contours MNK and MN’K’ is equal to the sum of the residue of the function E5 (v) at the pole P 
and the difference of the integrals along the contours YQ and YQ’ (1.29). 

By introducing the notation 
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(x -j- wm,)/M = T, T > (I + Rlm3)!M E tg (1.32) 

in accordance with the form of the argument of the exponent in the function E,(u) (1.22) we complete the 
necessary transformations of (1.22), enabling us to find the original Z directly. It remains to say that in all pairs 
of integrals the integrands take complex-conjugate values for equal values of the parameter T. Hence their 
difference is equal to twice the imaginary part of one of the integrals. 

The transformation of the remaining terms of the function @(r, cp) (1.1) d oes not present any significant 

differences. 
To sum up, the original of a,,,, has the form 

uuy =-H((M,,)H(u,-u~)zz(~~-op)H(r-r4)~- -TqF IS s 

-H (M;,) H (up’ - unI) H (uy’ - up’) H (a - -cl’) +;- - H (M - 1) H (T - 
IS 

c 

- 7,) k, i H (MX - T’) [cF, (cl) + dro2F2 (cl)1 ($) d-r’ -H (MI - 1) X 

% 
t 

x H (7 - z,‘),k, [ H (M,z - z’) E, (c2) ($) d-c’ - 
h’ 

-k, Im [H (pJ H (z - TV) 1, (TV) + H (- PJ H CT -- ~1) 1, (Ql - 
- k2 Im [H (p3')H (~-7~') I,(a,') + H (- pJ') if (t - ~1') 17 (TI')] - 

-_%k Im [H(R,-q)H(a--RR,-xTg)I:,(R1) 7 

$- H(s, - RI)& --x2) 18(q)]- H (M, -- 1) H(p,')H(Mty - rr2g.l) x 

x Im [IZ (mt - UM) H (z - ~5) Ig(~s) +a (m-m)H (z - G19(~)1 

Z9(u,) = -T')F,(U')(g-)dT' 

Ta = TM-1 + (yup + 2) A!&‘, M,, = Pi, - 1, k, = $ ( 

k, = 4y4k,,ml, k2 == 2y4k,iLI;4 

,c5 = (ymt + z) Mt-l + x2, -c6 = (x 1 -Mlt2 - R,"/z" + R12!z) Aft-' 

F, (4 = A, (4 AZ(u) (q + ez2), F2 (u) = A, (4 AZ (~1) Iu (el - 

(1.33) 
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- 1) + e,21 
A, (w) = - (da,/d2o) e2+, A2 (u) = (u” + ez2)+, e, = 1 f a,2 - b,‘, 

e2 = 2a,b, 

F, (v) = {(c + du2M,-“) f1 (u) E, (u) - 2 11 - 2yz (1 - u2Mt-“)I x ,fzz. 

. (u) Mt-“) R-l (0) 

F, (v) = F, (u) + 2tg 13Mrt2z? (1 - m,M: + Y*)-Q-~-~ 

F5 (I”, W) = {IcF, (d,) + dr2F2 (d,)l C (r) fl - 2r [I(1 - 2y2) F, (d,) t 

+ 2y2r2F2 (&)I fz2 + [(I - 2y*) A, (w) + 2y2rzF, (e,)l fzIl) R-l, 

F, (r, zu) = 2r3M,-’ (r2 - y2m,)-‘A,-‘Fz (d2) f F, (r, ~9) 

F, (r., 4 = r3 [,fB1’F~ (4 + f32’F2 (41 y-‘/R’: F, (u) = v2y-4f32’ (u)/R’ (/I) 

Cl = e, -- mMt2, d, = e, - r2Mt2, x1 = yx I 1’1, x2 = J~-“.L,, 

x3 = 52 (1 - y*)-1 

In (1.33) the quantities k&i’, pg’, 2 c and dz have expressions that are the same as MS1 , p3, cl and 
dl except that M is replaced by Mi while mS’, v’, vY’, pi’, 7*‘, r3’, TV’ and W’ are the same as the 
corresponding unprimed quantities, but with the specified change made in the sign of the radical. 
The variable T’ is given by expressions (1.12) for 7’ s ra’ = y-i 7. and (1.13) with the plus sign for 
7’ > TV’, in both of which T should be replaced by yr’. The variable v’ is given by expressions (1.28) 
for 7’ s TV’ and (1.29) with the plus sign for r>+~~’ and 7’ >-r*‘, in both of which T in s3 should be 
replaced by 7’ and under the root sign M should be replaced by Mi . The functions f31’, f32’ and R’ 
are similar to f3i, f32 and R, but their argument is y-l r. In (1.33) r and v are given by expressions 
(1.13) and (1.29) with the plus sign, while w in the integral with factor H(M- 1) is given by (1.32). 
The functions occurring in (1.1) and written in (1.33) and above with argument v or v’ are obtained 
from the originals after the substitution (1.23) or id/(1 - M1:?) = v’. 

2. ANALYSIS OF THE SOLUTION 

First we note that because of the conical shape of the penetrating body the solution (1.33) 
depends only on the self-similar variables X/T, y/r and z/r. 

The arguments of the Heaviside function determine the conditions (flow regime) and domain of 
existence of each part of the solution. The first pair of terms corresponds to the supersonic nature of 
the motion of the sharp leading edges of the body with respect to the velocity of longitudinal and 
transverse waves and introduces constant components into a,,, . 

According to the expressions for r4 and 74’ (1.33) the domain of definition of these components is 
bounded by plane waves attached to the leading edge, and according to the arguments of other 
Heaviside functions, by planes perpendicular to the specified plane fronts and passing through the x 
and z axes. The plane waves are touched by conical waves T = TV, T = 72 and T = TV’, 7 = 72’ 
determining, together with other arguments of the Heaviside functions, the domain of influence of 
terms corresponding to supersonic motion of the point of the body (M> 1, M,> 1) and its edges 
through the free surface (M,> 1, M,, > 1) and its edges for both supersonic and subsonic motion of 
the leading edges. 
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The terms in (1.33) containing 71 and ri’ in the Heaviside function arguments can be related to the 
influence of the motion of a leading edge through the free surface for subsonic velocities of its 
displacement along the surface x = 0 and partially for supersonic velocities, according to the 
arguments of the associated Heaviside functions. 

The seventh term in (1.33) describes perturbed motion inside the spherical fronts of longitudinal 
and transverse waves. The remaining terms give the influence of transverse waves associated with 
the reflection of longitudinal waves from the free surface. The eighth term is due to reflection of a 
spherical longitudinal wave from the free surface. The boundaries of its domain of existence will be 
a conical transverse wave 7 = RI +x3 touching the spherical front of the transverse wave and the 
plane 7 = x2 crossing the specified line of contact. 

The last term in (1.33) occurs only in the case when M,> 1 and is due to the reflection of the 
conical longitudinal wave T = r2 corresponding to this type of motion from the free surface. The 
boundaries of the domain of definition of this part of the solution will be the plane transverse wave 
T = 75 touching the conical transverse wave T = TV’, the surface ? = 76, continuously extended into 
the interior of the domain, and other surfaces specified by the arguments of the associated Heaviside 
functions. 

We will consider characteristic properties of the stress tensor component crYY in the perturbed 
region. According to the structure of the integrands of the third, fourth, fifth and sixth terms in 

(1.33) oyjJ has a logarithmic singularity at the leading edge of the body. One can relatively easily 
draw this conclusion for the motion regime M> 1, Ml > 1 so long as the third and fourth terms are 
integrable. For other motion regimes one must consider the asymptotic behaviour of the 
corresponding integrals. In all cases we have the following limiting relation in the plane y = 0: 

%Y pae=lim - 
g-m { 

ay4 
- ]%” 2nM82 1/i -- MS2 ---lt 1’1 - !1J,2 1’1 - M,,2] In g 

/ 
(2.1) 

The expression in square brackets is the left-hand side of Rayleigh’s equation with argument 
M,-'. If M,<x (where x is as before the dimensionless velocity of the surface waves), then this 
expression is negative, while in the case when M,>x it is positive. Consequently, when the velocity 
of the leading edges is less than the Rayleigh wave velocity, the normal stress on the surface of the 
body in a neighbourhood of the edges takes large positive values, which means that the contact of 
the penetrating body with the medium in the neighbourhood of the leading edges will be broken, 
and a crack will penetrate in front of them. For MS > x there will be a large negative normal stress in 
front of the edges and the contact between the body and the medium will not be broken. 

Solution (1.33) found for the case of a body (Fig. 1) penetrating into an elastic medium has yet 
another logarithmic singularity. By making a point in the perturbed medium tend to the axis of the 
body we obtain the limiting relation 

Ma > x, R, -+ 0 

~~~/(pa~) = lim {- (2ay’ cos /3/n) In g} (2.2) 
g--OS 

It follows from (2.2) that in a neighbourhood of an edge of the penetrating body (z = 0) there 
appears a large normal stress. We note that one can arrive at this conclusion directly using 
expression (1.4), putting y = z = 0. Investigations of the stress tensor component uzz showed that 
when RI+ 0, CT,,+ --co following the same law as uYu (2.2). The existence of this singularity in the 
solution is due to the fracture of the elastic medium element at the edge of the body in the plane 
z = 0. 
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3. PENETRATION INTO A LIQUID 

Solution (1.33) for aYY with p = y = 0 taken with the opposite sign is a perturbation of the 
pressure in the problem of the penetration of a body (Fig. 1) with constant velocity into a 
compressible fluid [3]. In this case the single integrals in (1.33), containing fundamental singularities 
of the solution, can be integrated. Omitting the complicated calculations, we will write the 
expression for the pressure referred to a dimensionless area u of half the centre section SM of the 
penetrating body (the section coinciding with the free surface of the liquid x = 0): u = S,(t)/ 
(2v02t2) = oltgpsin& in self-similar variables f = x/r, p = y/r, f = z/r (the bars are henceforth 
omitted) 

P = H (M,,) H (up - U&f) H (uy - up) H (1 - zq) II + If (J/r - 11 ): 
xH(zm,-I?R,)H(l - TJ {H (--AI,,) II, [H CM,) In I x+ (U/x- (1) I + 

+ H (-I@,) In I x+ (Mx)/~- (Mx) II i- N (MS,) (n/n) [H (My) X 
2: v* fP03 (9) - f4 (Pea (If)1 -I- H (-Mzc) If, (PO3 tag)) - f4 &la t~~~~~)l} + 

+ [ff (PJ IIf (1 - %) + ff (-Pa) ff (1 - -41 X 
X W (- M,J J& lnl x1+ (l)ixl’ (I)1 - H (Jf8A W4 V4 (ha’ (1)) + 

+ fl h2 WI) - H (-P&H (1 - ~~~ {H C--M,,) flI ln I XC (d/x1- (ad I - 
- If (Ma,) w4 If4 (P&s-’ fQ>l +- f4 (P5s-1 (~dU + 

(3.1) 

II = wur~-l, n, = M2/(2nrI,), n, = -j/i - nqiC0s p 

x” b) = 1x0 (7) + XII2 + x2, x* (z) = i(J’wG - X)” - ~~2~~21~~(~~ -LE) 
x1 = n&2/(22 + y21p), x2 = m,‘y%“- tg’ p/(2” + yv122)2 
Pijk (T) = Xi (IJ) Xj”9 M, = .4!fx - ‘1, fi (u) = arctg (U)i 

x1* W = [xs CT) * Xe12 + x7. x3,.1 = (2 + YVP)I(Y f ZVP), X6 = d-r2 

x5 (z) = ha2 -t- (1 - Mt2) R121%, X? = $/2 tg @, X8,9 = Xl@ “F y tg p 

In (3.1) the simpli~~ations for Fs (r, w) when y = 0 are omitted. According to the expressions for 
x3 and xs an indeterminacy appears in the calculation of the pressure in the planes y - zv,, = 0 and 
xvP - y tg p = 0 in the motion regime M, > 1. The corresponding terms in (3.1) should be computed 
by making points of the field tend to these planes from both directions. This treatment together with 
the first term in (3.1) ensures the continuity of P. A similar situation occurs in (1.33) with M, > 1 and 
M,,> 1. 

We also note that when @--+1~/2 solutions (1.33) and (3.1) turn into solutions corresponding to the 
penetration of a wedge into an elastic half-space and a compressible liquid [4]. Solution (3.1) also 
contains within itself the solution of [5]. 

Figures 5 and 6 show the results of calculations of the pressure P for penetration into a 
compressible fluid of a star-shaped body with four symmetric cycles (n = 4) with M = 0.8; p = 1r/4 
(Fig. 5) and p = 70’3 (Fig. 6). The solution is constructed using the principle of superposition [l] and 
(3.1) as the basic solution. The solid curves correspond to the pressure distribution in the y = 0 
plane, and the broken curves to t3 = rr/4. The pairs of curves l-5 correspond to the sections x = 0.9, 
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FIG. 5. FIG. 6. 

0.75, 0.55, 0.35 and 0.15. The vertical dash-dot lines in those sections show the position of the 
leading edge, in the neighbourhood of which the pressure has a logarithmic singularity. The black 
triangles show the position of the leading edge on the free surface. In the case /3 = q/3 (Fig. 6) the 
leading edge is displaced along the free surface at a supersonic velocity M, > 1. It can be seen that in 
this penetration regime there is an inflated pressure distribution profile immediately behind the 
wave front, unlike in the case when p = 7r/4 (M,< 1) (Fig. 5). 
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